Формализм
– одно из четырех главных направлений в основаниях математики наряду с "эффективизмом", "интуиционизмом" и "логицизмом". Основоположником формализма является "Д.Гильберт", который поставил триединую задачу в области обоснования математики, известную под названием программы Гильберта:
1. Признать, что значительная часть математических абстрактных объектов (см. "Абстрактный объект") – это идеальные конструкции, не имеющие точной интерпретации во внешнем мире и вводимые прежде всего как интеллектуальные орудия для работы с реальными объектами. Более того, не все математические высказывания о реальных объектах могут считаться реальными. Назначение идеальных объектов и высказываний – перебросить мост от одних реальных высказываний к другим.
2. Точно и до конца формализовать допустимые методы работы с идеальными конструкциями, с тем, чтобы исключить здесь обращения к интуиции и апелляции к содержательному смыслу. Т.о., математика должна быть превращена в исчисление.
3. Создать метаматематику, которая должна иметь дело с частным случаем реальных объектов – математическими формализмами, и строго обосновать при помощи как можно более простых, интуитивно ясных и не вызывающих сомнения у конструктивистов методов (финитных методов) принципиальную возможность устранения идеальных объектов и высказываний из доказательств реальных утверждений. Математическую теорию, развитую для потребностей метаматематики, Д.Гильберт назвал "доказательств теорией". В качестве метода такого обоснования предполагалось доказать непротиворечивость, а по возможности и полноту, математических формализмов.
По мере развития теории доказательств и теории моделей формализм все больше сближался с логицизмом, и сейчас многие авторы сводят их в единое металогическое направление. Однако имеется принципиальное методологическое отличие формализма от логицизма и от наивного платонизма. Для формалиста абстрактные объекты и понятия – не более чем орудия, позволяющие получать реальные истины и конструкции; он не ставит вопрос об их существовании или происхождении, это не относится к задачам формализма.
Воспользовавшись достижениями логицизма, в частности трудом "А.Уайтхеда" и "Б.Рассела", школа Гильберта уже в 20-е гг. точно сформулировала формальное исчисление для арифметики и стимулировала работы по формальной аксиоматизации "множеств теории". Интенсивно велись исследования в направлении непротиворечивости и полноты построенного арифметического исчисления. Действуя под сильнейшим влиянием формализма, "А.Тарский" и "Р.Карнап" определили понятие истины и вместе с "Л.Витгенштейном" сформулировали важнейшие понятия верифицируемости и фальсифицируемости (см. "Фальсификация"), связывающие идеальные высказывания с реальными. Философская суть их состоит в том, что любое утверждение должно допускать прямую либо косвенную процедуру подтверждения или опровержения. Утверждения, которые не могут быть проверены даже косвенно, – псевдопроблемы.
Парадоксальным образом одним из первых теоретических конструктов, проверенных при помощи формалистских методов, явилась сама программа Гильберта. Теорема "Гёделя" о неполноте показала, что цель-максимум ее недостижима, а его же (Гёделя) теорема о недоказуемости непротиворечивости – что фальсифицируется и предложенное Гильбертом средство. Т.о., программа Гильберта не сводится к псевдопроблемам и являлась реальной программой научного исследования. Как известно, чаще всего приводят к важным результатам теоретические программы с недостижимыми, но реально проверяемыми целями. Несмотря на защиту "Л.Брауэром", который в других случаях резко критиковал его, но соглашался с целями программы Гильберта, научная общественность восприняла результаты Гёделя как крах программы Гильберта.
Пожалуй, самым слабым местом программы Гильберта была ее общая установка на обоснование и спасение существующей математики, которая возникла как результат реакции Гильберта на пересказ ему идей Брауэра и на некоторые личные дискуссии с ним (сам Гильберт работ Брауэра не читал). В данном месте первоначальный формализм соединялся с таким математическим платонизмом, который представлял собой вульгаризированную версию абстрактных математических объектов по типу «абсолютных идей» Платона. Поэтому математические платонисты восприняли формализм как молитву, произнесение которой позволит им освятить свою деятельность и в дальнейшем ничего не менять. Именно эта установка оказалась подорвана теоремами Гёделя, показавшими, что перестраивать математику все равно придется и что в ней всегда есть место сомнению.
Тем не менее дальнейшее развитие подтвердило скорее точку зрения Брауэра, чем большинства. Теория доказательств стала приносить позитивные результаты. В 1936 "Г.Генцен" опубликовал доказательство непротиворечивости арифметики, в котором единственным неформализуемым в арифметике шагом была трансфинитная индукция до ε0, которая, безусловно, косвенно верифицируема и фальсифицируема содержательными полностью финитными методами и конструктивно приемлема. Еще раньше, в 1934, он опубликовал доказательство теоремы нормализации, из которого следовала возможность устранения промежуточных идеальных высказываний из логических выводов реальных высказываний. В 1939 П.С.Новиков установил, что из классического арифметического доказательства существования объекта, удовлетворяющего разрешимому условию, следует возможность построить такой объект. Тем самым реальные утверждения, доказуемые в арифметике, оказались обоснованными.
В дальнейшем были получены оценки роста длины вывода при устранении идеальных понятий, подтвердившие прозрение Гильберта о необходимости идеальных объектов и понятий для практического получения реальных результатов. По сравнению с такими оценками даже башня из степеней двоек растет слишком медленно.
Обращают на себя внимание философские и методологические достижения формализма, вошедшие в основу современной науки.
Методами формализма были исследованы неклассические, в первую очередь интуиционистские, системы, что позволило показать совместимость идей Брауэра о творящем субъекте и намеренном незнании с более традиционными идеальными математическими понятиями.
Различение идеальных и реальных объектов проложило путь к таким новым по своей методологии разделам математики, как нестандартный анализ, в котором действительная ось либо другая структура пополняются объектами более высокой степени идеальности т.о., чтобы сохранялись все выразимые в формальном языке свойства.
Разделение на язык и метаязык оказалось плодотворным не только в логике и философии, но и в таких новых дисциплинах, как когнитивная наука и информатика. Четыре уровня метаязыкового описания используются, в частности, в практической системе построения моделей сложных систем UML. Было отброшено ограничение Гильберта о финитности метаязыка, и ныне метаязыком может служить любая система.
Применение таких методов формализма в физике позволило оценить глубину прозрения Канта об априорности математических понятий по отношению к физическим. Выяснилось, что вся современная физика логически следует из решения измерять величины действительными числами и в этом смысле оправдывает парадоксальное высказывание Канта, что Разум диктует законы Природе. Приложение формализма в психологии привело к развитию "когнитивной науки".
Литература:
Whitehead J., Russell В. Principia Mathematica. Oxf., 1912–20;
Гильберт Д., Бернайс П. Основания математики, т. 1–2. М., 1979, 1982;
Гончаров С. С., Ершов Ю.Л., Самохвалов К.Ф. Введение в логику и методологию науки. М., 1994.
Н.Н.Непейвода
1. Признать, что значительная часть математических абстрактных объектов (см. "Абстрактный объект") – это идеальные конструкции, не имеющие точной интерпретации во внешнем мире и вводимые прежде всего как интеллектуальные орудия для работы с реальными объектами. Более того, не все математические высказывания о реальных объектах могут считаться реальными. Назначение идеальных объектов и высказываний – перебросить мост от одних реальных высказываний к другим.
2. Точно и до конца формализовать допустимые методы работы с идеальными конструкциями, с тем, чтобы исключить здесь обращения к интуиции и апелляции к содержательному смыслу. Т.о., математика должна быть превращена в исчисление.
3. Создать метаматематику, которая должна иметь дело с частным случаем реальных объектов – математическими формализмами, и строго обосновать при помощи как можно более простых, интуитивно ясных и не вызывающих сомнения у конструктивистов методов (финитных методов) принципиальную возможность устранения идеальных объектов и высказываний из доказательств реальных утверждений. Математическую теорию, развитую для потребностей метаматематики, Д.Гильберт назвал "доказательств теорией". В качестве метода такого обоснования предполагалось доказать непротиворечивость, а по возможности и полноту, математических формализмов.
По мере развития теории доказательств и теории моделей формализм все больше сближался с логицизмом, и сейчас многие авторы сводят их в единое металогическое направление. Однако имеется принципиальное методологическое отличие формализма от логицизма и от наивного платонизма. Для формалиста абстрактные объекты и понятия – не более чем орудия, позволяющие получать реальные истины и конструкции; он не ставит вопрос об их существовании или происхождении, это не относится к задачам формализма.
Воспользовавшись достижениями логицизма, в частности трудом "А.Уайтхеда" и "Б.Рассела", школа Гильберта уже в 20-е гг. точно сформулировала формальное исчисление для арифметики и стимулировала работы по формальной аксиоматизации "множеств теории". Интенсивно велись исследования в направлении непротиворечивости и полноты построенного арифметического исчисления. Действуя под сильнейшим влиянием формализма, "А.Тарский" и "Р.Карнап" определили понятие истины и вместе с "Л.Витгенштейном" сформулировали важнейшие понятия верифицируемости и фальсифицируемости (см. "Фальсификация"), связывающие идеальные высказывания с реальными. Философская суть их состоит в том, что любое утверждение должно допускать прямую либо косвенную процедуру подтверждения или опровержения. Утверждения, которые не могут быть проверены даже косвенно, – псевдопроблемы.
Парадоксальным образом одним из первых теоретических конструктов, проверенных при помощи формалистских методов, явилась сама программа Гильберта. Теорема "Гёделя" о неполноте показала, что цель-максимум ее недостижима, а его же (Гёделя) теорема о недоказуемости непротиворечивости – что фальсифицируется и предложенное Гильбертом средство. Т.о., программа Гильберта не сводится к псевдопроблемам и являлась реальной программой научного исследования. Как известно, чаще всего приводят к важным результатам теоретические программы с недостижимыми, но реально проверяемыми целями. Несмотря на защиту "Л.Брауэром", который в других случаях резко критиковал его, но соглашался с целями программы Гильберта, научная общественность восприняла результаты Гёделя как крах программы Гильберта.
Пожалуй, самым слабым местом программы Гильберта была ее общая установка на обоснование и спасение существующей математики, которая возникла как результат реакции Гильберта на пересказ ему идей Брауэра и на некоторые личные дискуссии с ним (сам Гильберт работ Брауэра не читал). В данном месте первоначальный формализм соединялся с таким математическим платонизмом, который представлял собой вульгаризированную версию абстрактных математических объектов по типу «абсолютных идей» Платона. Поэтому математические платонисты восприняли формализм как молитву, произнесение которой позволит им освятить свою деятельность и в дальнейшем ничего не менять. Именно эта установка оказалась подорвана теоремами Гёделя, показавшими, что перестраивать математику все равно придется и что в ней всегда есть место сомнению.
Тем не менее дальнейшее развитие подтвердило скорее точку зрения Брауэра, чем большинства. Теория доказательств стала приносить позитивные результаты. В 1936 "Г.Генцен" опубликовал доказательство непротиворечивости арифметики, в котором единственным неформализуемым в арифметике шагом была трансфинитная индукция до ε0, которая, безусловно, косвенно верифицируема и фальсифицируема содержательными полностью финитными методами и конструктивно приемлема. Еще раньше, в 1934, он опубликовал доказательство теоремы нормализации, из которого следовала возможность устранения промежуточных идеальных высказываний из логических выводов реальных высказываний. В 1939 П.С.Новиков установил, что из классического арифметического доказательства существования объекта, удовлетворяющего разрешимому условию, следует возможность построить такой объект. Тем самым реальные утверждения, доказуемые в арифметике, оказались обоснованными.
В дальнейшем были получены оценки роста длины вывода при устранении идеальных понятий, подтвердившие прозрение Гильберта о необходимости идеальных объектов и понятий для практического получения реальных результатов. По сравнению с такими оценками даже башня из степеней двоек растет слишком медленно.
Обращают на себя внимание философские и методологические достижения формализма, вошедшие в основу современной науки.
Методами формализма были исследованы неклассические, в первую очередь интуиционистские, системы, что позволило показать совместимость идей Брауэра о творящем субъекте и намеренном незнании с более традиционными идеальными математическими понятиями.
Различение идеальных и реальных объектов проложило путь к таким новым по своей методологии разделам математики, как нестандартный анализ, в котором действительная ось либо другая структура пополняются объектами более высокой степени идеальности т.о., чтобы сохранялись все выразимые в формальном языке свойства.
Разделение на язык и метаязык оказалось плодотворным не только в логике и философии, но и в таких новых дисциплинах, как когнитивная наука и информатика. Четыре уровня метаязыкового описания используются, в частности, в практической системе построения моделей сложных систем UML. Было отброшено ограничение Гильберта о финитности метаязыка, и ныне метаязыком может служить любая система.
Применение таких методов формализма в физике позволило оценить глубину прозрения Канта об априорности математических понятий по отношению к физическим. Выяснилось, что вся современная физика логически следует из решения измерять величины действительными числами и в этом смысле оправдывает парадоксальное высказывание Канта, что Разум диктует законы Природе. Приложение формализма в психологии привело к развитию "когнитивной науки".
Литература:
Whitehead J., Russell В. Principia Mathematica. Oxf., 1912–20;
Гильберт Д., Бернайс П. Основания математики, т. 1–2. М., 1979, 1982;
Гончаров С. С., Ершов Ю.Л., Самохвалов К.Ф. Введение в логику и методологию науки. М., 1994.
Н.Н.Непейвода
Новая философская энциклопедия
Толковый словарь руссого языка под ред. Д.Н. Ушакова
Малый академический словарь
Энциклопедический словарь Гранат
Литературная энциклопедия
От аллегории до ямба
Литературная энциклопедия
Литературная энциклопедия
Правовая наука и юридическая идеология России. Энциклопедический словарь биографий)