Эйлер
Эйлер, Леонард
[Euler; 4 апр. 1707 - 7 сент. 1783] - математик, механик и физик. Род. в Базеле (Швейцария) в семье небогатого пастора Пауля Эйлера. Образование получил сначала у отца (к-рый в молодости занимался математикой под руководством Я. Бернулли), затем (осенью 1720) поступил в Базел. ун-т, где в 1724 произнес речь, посвященную сравнению философии Декарта и Ньютона, и был удостоен степени магистра искусств. С конца 1723 Э. по настоянию отца стал изучать богословие, но вскоре целиком отдался изучению любимой им математики. В Базел. ун-те Э. слушал лекции по математике И. Бернулли, но особенное значение имели беседы, проводимые с ним И. Бернулли по субботам в течение неск. лет. В 1726-27 Э. выступил в журнале "Acta eruditorum" с первыми научными работами, посвященными актуальным задачам об изохроне в сопротивляющейся среде и о траекториях. Тогда же он принял участие в объявленном Париж. АН конкурсе работ на тему о наилучшем расположении мачт на корабле; соч. Э. было опубл. в 1728.
В 1725 два друга Э., сыновья его учителя - Даниил и Николай Бернулли, не найдя применения своим силам в Базеле, приняли приглашение только что организованной АН в Петербурге. По словам Э., он "преисполнился невыразимым желанием поехать вместе с ними" тогда же. В конце 1726 по рекомендации братьев Бернулли Э. пригласили на одно из свободных мест в Петербург. АН. Он оставил Швейцарию и в мае 1727 приехал в Петербург.
В Петербурге (где Э. жил в 1727 - 41 и с 1766 до конца жизни) Э. нашел весьма благоприятные условия для научной деятельности: материальное обеспечение, широкую возможность публикации трудов, круг ученых с общими интересами в лице Д. Бернулли, X. Гольдбаха, Я. Германа и др. Э. сразу приступил к занятиям математикой и механикой. Его статьи на лат. языке появлялись в органе Академии - "Commentarii Academiae imp. scientiarum Petropolitanae", начиная со 2-го тома за 1727 (1729) и публиковались в этом журнале (несколько раз менявшем свое название) без перерыва до самой смерти Э. и еще десятилетия спустя. За 14 лет первого Петербург. периода жизни Э. подготовил к печати ок. 80 трудов и опубл. св. 50; впоследствии его научная продукция значительно выросла. Значение своей работы в рус. Академии для себя лично Э. оценил в письме к Шумахеру от 18 ноября 1749 следующим образом: "Что собственно до меня касается, то при отсутствии такого превосходного обстоятельства, я бы вынужден был, главным образом, обратиться к другим занятиям, в которых, по всем признакам, мог бы заниматься только крохоборством. Когда его королевское величество [Фридрих II Прусский. - Ред.] недавно меня спросил, где я изучал то, что знаю, я, согласно истине, ответил, что всем обязан своему пребыванию в Петербургской Академии".
Э. участвовал во многих направлениях деятельности Академии. Он читал лекции студентам академич. ун-та, написал общедоступное "Руководство к арифметике" (1740), участвовал в различных технич. экспертизах. Многие годы он успешно работал над составлением карт России. По специальному поручению Академии Э. подготовил к печати "Морскую науку" (2 чч., 1749) - фундаментальный труд по теории кораблестроения и кораблевождения. Позднее на основе этой книги он написал для учащихся морских школ сокращенное руководство на франц. яз. (1773), рус. перевод к-рого опубл. в 1778 его ученик, племянник М. В. Ломоносова, M. E. Головин.
В Петербурге Э. изучил рус. язык. В 1733 он женился на Е. Гзелль - дочери академич. живописца. В Петербурге же родились два его сына, впоследствии (более из уважения к заслугам отца) состоявшие чл. Петербург. АН: математик и механик Иоганн Альбрехт (1734-1800) и врач Карл (1740-90). Третий сын Кристоф (1743-1812), участник астрономич. экспедиции Академии наук 1769, служа в армии, достиг чина генерал-лейтенанта от артиллерии и был дир. оружейного з-да в Сестрорецке.
Тревожное и неустойчивое положение в период регентства Анны Леопольдовны заставило Э. принять в 1741 приглашение прусского короля Фридриха II переехать в Берлин. где предстояла реорганизация бездействовавшего Об-ва наук в большую новую академию. В Берлин. АН Э. занял пост дир. класса математики и чл. правления, а после смерти ее первого президента П. Л. М. Мопертюи несколько лет (с 1759) фактически руководил академией, вникая во все детали ее деятельности, вплоть до хозяйственных и финансовых дел. За 25 лет жизни в Берлине он полностью или вчерне подготовил ок. 300 работ, среди них ряд больших монографий. В 40-е и 50-е годы он участвовал в неск. научных и философских дискуссиях. С позиций картезианского механич. материализма, к-рый сочетался у него с глубокой личной религиозностью, Э. выступал против учения о монадах и предустановленной гармонии Лейбница и Вольфа. С Ж. Д'Аламбером он вел спор о свойствах логарифмов отрицательных и мнимых чисел, с Д'Аламбером и Д. Бернулли - о природе решений дифференциального ур-ния колеблющейся струны. Этот спор, в к-ром приняли участие и другие крупнейшие математики 2-й пол. 18 в., имел большое значение в развитии математич. физики и учения о тригонометрич. рядах, а так же в обобщении понятия функции.
Э. продолжал заниматься и чисто прикладными задачами. По желанию Фридриха II он перевел с англ. на нем. язык "Новые принципы артиллерии" Б. Робинса (1745) и в обширных дополнениях к этой книге и одном мемуаре (1753) существенно развил учение о движении круглого снаряда в воздухе. Э. консультировал работы по проведению канала между Хавелем и Одером, по водоснабжению дворца Сан-Суси, по организации лотерей. Изучая действие сегнерова колеса, заложил основы теории турбин. Он внес ценный вклад в оптич. технику, теоретически установив, что путем соединения двух линз различной преломляемости можно избежать хроматич. аберрации, мешавшей дальнейшему усилению телескопов-рефракторов; первый ахроматич. объектив по принципу Э. построил в 1758 англ. оптик Дж. Доллонд. Э. существенно усовершенствовал также волшебный фонарь. Он занимался и вопросами практич. механики, изыскивая целесообразную форму зубцов зубчатых передач, изучал устройство ветряных мельниц и т. д. Ценный вклад внес Э. и в учение о сопротивлении материалов, где его имя, напр., носит известная формула для критич. нагрузки колонн.
Живя в Берлине, Э. не переставал интенсивно работать для Петербург. АН, сохраняя звание ее почетного чл. и получая пенсию. Он вел с Петербургом обширную научную и научно-организационную переписку, в частности переписывался с М. В. Ломоносовым, к-рого высоко ценил. Э. редактировал математич. отдел. рус. академич. научного органа, где опубл. за это время почти столько же статей, сколько в "Мемуарах" Берлин. академии. Он деятельно участвовал в подготовке рус. математиков; в Берлин командировались для занятий под его руководством будущие академики - С. К. Котельников, С. Я. Румовский и М. Софронов. Большую помощь Э. оказывал Петербург. АН, приобретая для нее научную литературу и оборудование, ведя переговоры с кандидатами на должности в Академии и т. д.
В бытность Э. в Берлине несколько раз вставал вопрос о его возвращении в Россию. Трения Э. с королем Фридрихом II, связанные с расхождениями в деловых вопросах работы академии, но более всего с глубоким антагонизмом во многих взглядах и вкусах короля и ученого, постепенно привели к разрыву между ними. Король долго не отпускал ученого с мировым именем, но Э. настоял на своем и 17(28) июля 1766 вместе с семьей вернулся в Петербург.
Несмотря на преклонный возраст и постигшую его почти полную слепоту (правый глаз Э. потерял в 1738, а левым почти не видел с осени 1766), работоспособность его не снизилась. Благодаря сохранившейся силе ума и феноменальной памяти, а также помощи способных молодых секретарей, его учеников - И. А. Эйлера, В. Л. Крафта, А. И. Лекселя, Н. И. Фуса, M. E. Головина - Э. смог до конца жизни по-прежнему продуктивно работать. За 17 лет вторичного пребывания в Петербурге им было подготовлено ок. 400 работ, среди них неск. больших книг. За один 1777 он вместе с Фусом подготовил почти 100 статей. Э. продолжал участвовать и в организационной работе Академии. В 1776 он был одним из экспертов проекта одноарочного моста через Неву, предложенного И. П. Кулибиным, и один из всей комиссии оказал широкую поддержку выдающемуся рус. изобретателю.
Заслуги Э. как крупнейшего ученого и организатора научных исследований получили высокую оценку еще при его жизни. Помимо Петербург. и Берлин. академий, он состоял чл. крупнейших научных учреждений: Париж. академии, Лондон. королев. об-ва и т. д. В различных научных конкурсах работы Э. неоднократно удостаивались премии.
Э. скончался в Петербурге от кровоизлияния в мозг и был похоронен на Смоленском кладбище; в 1837 Петербург. АН воздвигла на его могиле памятник. В 1956 прах Э. был перенесен в Лен. некрополь.
Одной из отличительных сторон творчества Э. является его исключительная продуктивность. Только при жизни Э. было опубл. ок. 550 его книг и статей; список трудов Э. содержит примерно 850 названий. В 1909 Швейцарское естественнонаучное об-во приступило к изданию полного собрания соч. Э., к-рое должно составить 72 тома; к 1956 вышло из печати 40 томов. Большой интерес представляет колоссальная научная переписка Э. (около 3 000 писем), до сих пор опубл. только частично.
Необыкновенно широк был круг занятий Э., охватывавших все отделы современной ему математики и механики, теорию упругости, математич. физику, оптику, теорию музыки, теорию машин, баллистику, морскую науку, страховое дело и т. д. Около 3/5 работ Э. относится к математике, остальные 2/5 преимущественно к ее приложениям. В этом соотношении нашла выражение тесная связь математич. исследований Э. с практикой. Математику он разрабатывал в значительной части как аппарат естествознания, особенно механики и техники. Но Э. прежде всего был математиком. Часто черпая задачи из практики, он развивал математику не от случая к случаю, но как органич. целое, части к-рого находятся в тесной и глубокой взаимосвязи. Свои результаты и результаты, полученные другими, Э. систематизировал в ряде классич. монографий, написанных с поразительной ясностью и снабженных ценными примерами. Таковы, напр.: "Механика, или наука о движении, изложенная аналитически" (2 тт., 1736), "Введение в анализ" (2 тт., 1748), "Дифференциальное исчисление" (1755), "Теория движения твердого тела" (1765), "Универсальная арифметика" (в рус. пер., 2 тт., 1768-69), выдержавшая ок. 30 изданий на 6 языках, "Интегральное исчисление" (3 тт., 1768-70, 4-й т., 1794) и др. Особенностью этих руководств является постоянная забота Э. раскрыть пути, ведущие к излагаемым результатам; благодаря этому многие книги Э. и сейчас интересны не только для специалистов, но и для учащейся молодежи. В 18 в., а отчасти и в 19 в., огромную популярность приобрели общедоступные "Письма о разных физических и филозофических материях, писанные к некоторой немецкой принцессе..." (3 тт., 1768-1774), к-рые выдержали св. 40 изданий на 10 языках. Большая часть содержания монографий Э. вошла затем в учебные руководства для высшей и отчасти для средней школы. Невозможно перечислить все доныне употребительные теоремы и методы Э., из к-рых только немногие фигурируют в литературе под его именем.
В "Механике" Э. впервые изложил в широком объеме динамику точки при помощи нового математич. анализа. В первом томе этого соч. рассмотрено свободное движение точки под действием различных сил как в пустоте, так и в сопротивляющейся среде; во втором томе - движение точки по данной линии или по данной поверхности. При этом Э. не только упростил приемы решения уже известных проблем, но и решил многие новые задачи, открыл пути к дальнейшим исследованиям. В частности, большое значение для развития небесной механики имела глава о движении точки под действием центральных сил. В 1744 он впервые корректно сформулировал механич. принцип наименьшего действия и показал его первые применения. В "Теории движения твердых тел" Э. разработал кинематику и динамику твердого тела и дал уравнения его вращения вокруг неподвижной точки, положив начало теории гироскопов. В своей теории корабля Э. внес ценный вклад в теорию устойчивости. Все это подготовило почву для создания системы аналитич. механики Лагранжа. Велики были открытия Э. и в небесной механике. Соревнуясь с франц. математиком А. Клеро, он значительно продвинул теорию движения Луны. Метод, изложенный в первой монографии Э. по этому вопросу (1753), был использован Т. Майером для вычисления лунных таблиц, долгое время служивших для определения долготы в открытом море; высокие достоинства предложенного Э. другого метода определения лунной орбиты (1772) получили должную оценку лишь в конце 19 в. Мемуары 1757-71 внесли большой вклад в механику сплошных сред (осн. ур-ния движения идеальной жидкости в форме Э. и в т. н. переменных Лагранжа, колебания газа в трубах и пр.). Обширный цикл работ, начатый в 1748, Э. посвятил математич. физике: задачам о колебании струн, пластинок, мембраны и др. Все эти исследования стимулировали развитие теории дифференциальных ур-ний, приближенных методов анализа, специальных функций, дифференциальной геометрии и т. д. Многие чисто математич. открытия Э. содержатся именно в этих его работах.
Гл. делом Э., как математика, явилась разработка математич. анализа, самые рамки к-рого он значительно расширил по сравнению со своими предшественниками. Он заложил основы нескольких математич. дисциплин, к-рые только в зачаточном виде имелись или вовсе отсутствовали в исчислении бесконечно малых Ньютона, Лейбница и старших Бернулли. Так, Э. первым систематически ввел в рассмотрение функции комплексного аргумента ("Введение в анализ", т. 1) и исследовал свойства осн. элементарных функций комплексного переменного (показательная, логарифмич. и тригонометрич. функции). В частности, он вывел формулы, связывающие тригонометрич. функции с показательной (формулы Эйлера). Работы Э. в этом направлении, выяснение им нек-рых свойств аналитич. функций (ур-ния Д'Аламбера-Эйлера, связь с конформными отображениями) и, наконец, применение мнимых величин к вычислению интегралов положили начало теории функций комплексного переменного.
Э. явился создателем вариационного исчисления, изложенного в работе "Метод нахождения кривых линий, обладающих свойствами максимума, либо минимума..." (1744). После работ Лагранжа Э. далее развил вариационное исчисление в труде "Интегральное исчисление" и ряде статей. Метод, с помощью к-рого Э. в 1744 вывел необходимое условие экстремума функционала - "уравнение Э.", явился прообразом прямых методов вариационного исчисления 20 в.; позднее Э. ввел в рассмотрение поле экстремалей.
Систематически развивая новые приемы интегрирования дифференциальных ур-ний, введя ряд осн. понятий в этой области, Э. создал, как самостоятельную дисциплину, теорию обыкновенных дифференциальных ур-ний и заложил основы теории ур-ний с частными производными. Здесь ему принадлежит огромное число открытий: классич. общий способ решения линейных ур-ний с постоянными коэффициентами, метод вариации произвольных постоянных, выяснение осн. свойств ур-ния Риккати, интегрирование линейных ур-ний с переменными коэффициентами (в частности, т. н. ур-ния Бесселя) с помощью бесконечных рядов, критерии особых решений, учение об интегрирующем множителе, различные приближенные методы и ряд приемов решения ур-ний с частными производными. Значительную часть этих результатов Э. собрал в своем "Интегральном исчислении".
Э. обогатил также дифференциальное и интегральное исчисления в узком смысле слова. Достаточно назвать широкое развитие учения о замене переменных, теорему об однородных функциях, подстановки Эйлера, понятие двойного интеграла и вычисление многих специальных интегралов. В теорию рядов Э. внес новые идеи, к-рые показывают, что он умел видеть на многие десятилетия вперед. Примером может служить его трактовка проблемы сходимости рядов. В "Дифференциальном исчислении" Э. высказал и подкрепил примерами убеждение в целесообразности применения расходящихся рядов и предложил методы обобщенного суммирования рядов. При тогдашнем состоянии науки он не мог выяснить и даже вполне корректно поставить вопрос об условиях, в к-рых законны его определения и методы; он не знал также всей важности построения теории сходимости рядов. Тем не менее в своих воззрениях и в методах суммирования он предвосхитил идеи современной строгой теории расходящихся рядов, созданной на рубеже 19 и 20 вв. Кроме того, Э. получил в теории рядов множество конкретных результатов. Он открыл т. н. формулу суммирования Эйлера-Маклорена, предложил преобразование рядов, носящее его имя, определил суммы громадного количества рядов и ввел в математику новые важные типы рядов (напр., тригонометрич. ряды, ряды Ламберта). Сюда же примыкают исследования Э. по теории непрерывных дробей и др. бесконечных процессов.
Э. является основоположником теории специальных функций. Он первым начал рассматривать синус и косинус как функции, а не как отрезки в круге. Им получены почти все классич. разложения элементарных функций в бесконечные ряды и произведения. В его трудах создана теория гамма-функции. Он исследовал свойства эллиптич. интегралов, гиперболич. и цилиндрич. функций, дзета-функции, нек-рых тэта-функций, интегрального логарифма и важных классов специальных многочленов.
По замечанию П. Л. Чебышева, Э. положил начало всем изысканиям, составляющим общую часть теории чисел, к к-рой относится св. 100 мемуаров Э. Так, Э. доказал ряд утверждений, высказанных франц. математиком П. Ферма, разработал основы теории степенных вычетов и теории квадратичных форм, обнаружил (но не доказал) квадратичный закон взаимности и исследовал ряд задач диофантова анализа. В работах о разбиении чисел на слагаемые и по теории простых чисел Э. впервые использовал методы анализа, явившись тем самым создателем аналитич. теории чисел. В частности, он ввел знаменитую дзета-функцию и доказал т. н. тождество Э., связывающее простые числа со всеми натуральными (формулы Эйлера).
Велики заслуги Э. и в др. областях математики. В алгебре ему принадлежат работы о решении в радикалах ур-ний высших степеней и об ур-ниях с двумя неизвестными, а также т. н. тождество Э. о четырех квадратах. Э. значительно продвинул аналитич. геометрию, особенно учение о поверхностях 2-го порядка. В дифференциальной геометрии он детально исследовал свойства геодезич. линий, впервые применил натуральные ур-ния кривых, а главное, заложил основы теории поверхностей. Он ввел понятие главных направлений в точке поверхности, доказал их ортогональность, вывел формулу для кривизны любого нормального сечения, начал изучение развертывающихся поверхностей и т. д.; в одной из работ (опубл. посмертно в 1862) он частично предварил исследования нем. математика К. Гаусса по внутренней геометрии поверхностей. Э. занимался и отдельными вопросами топологии и, напр., доказал важную теорему о выпуклых многогранниках (встречающуюся в рукописях Декарта без доказательства).
Э.-математика нередко характеризуют как гениального "вычислителя". Действительно, он был непревзойденным мастером формальных выкладок и преобразований; в его трудах многие математич. формулы и символика впервые получают современный вид (напр., ему принадлежат обозначения для е и π). Однако Э. был не только исключительной силы "вычислителем". Он внес в науку ряд глубоких идей. Даже в тех вопросах, где он, как и др. математики 18 в., стоял на шаткой почве, его рассуждения, как правило, могут быть строго обоснованы и служат образцом глубины проникновения в предмет исследования.
По выражению Лапласа, Э. явился общим учителем математиков 2-й пол. 18 в. От его работ непосредственно отправлялись в разнообразных исследованиях П. С. Лаплас, Ж. Л. Лагранж, Г. Монж, А. М. Лежандр, К. Ф. Гаусс, позднее О. Коши, М. В. Остроградский, П. Л. Чебышев и др. Рус. математики высоко ценили творчество Э., а деятели чебышевской школы видели в Э. своего идейного предшественника в его постоянном чувстве конкретности, в интересе к конкретным трудным задачам, требующим развития новых методов, в стремлении получать решение задач в форме законченных алгоритмов, позволяющих находить ответ с любой требуемой степенью точности.
Соч.: Opera omnia. Series I - Opera mathematica, v. 1-28, Lausannae, 1911-55; Series 2 - Opera mechanica et astronomica, v 1-4, 10, 12-14, B.-Lpz., 1912-55. Series 3 - Opera physica, Miscellanae epistolae, v. 1-4, Lausannae, 1911-42; в рус. пер. - Универсальная арифметика, т. 1-2, СПб, 1768-69; Письма о разных физических и филозофических материях, писанные к некоторой немецкой принцессе..., ч. 1-3,. СПб, 1768-74; Полное умозрение строения и вождения кораблей, сочиненное в пользу учащихся навигации..., СПб, 1778; Введение в анализ бесконечно малых, т. 1, М.-Л., 1936; Метод нахождения кривых линий, обладающих свойствами максимума, либо минимума, или решение изопериметрической задачи, взятой в самом широком смысле, М.-Л., 1934; Новая теория движения Луны, Л., 1934; Основы динамики точки, М.-Л., 1938; Дифференциальное исчисление, М.-Л., 1949; Интегральное исчисление, т. 1. M., 1956. Опубликованная до сих пор переписка Э. разбросана в различных изданиях; см. ниже список Erneström'a. Лит.: Erneström G., Verzeichnis der Schriften Leonard Eulers, Lfg 1-2, Lpz., 1910-1913 (Jahresbericht der Deutsohen Mathematiker-Vereinigung. Ergänzungsband 4, Lfg 1-2) [Имеется обширная библиография работ Э.]; Fuss N.. Eloge de monsieur Léonard Euler..., St. Pétersbonrg, 1783 (имеется библиография работ Э., в том числе рукописей); в рус. пер. - Похвальная речь покойному Леонгарду Эйлеру..., в кн.: Академические сочинения, выбранные из первого тома Деяний Академии наук, под заглавием: Nova Acta Academiae scientiarum imp. Petropolitanae, 4. 1, СПб, 1801, Пекарский П., История имп. Академии наук в Петербурге, т. 1, СПб, 1870; Литвинова Е. Ф. Лаплас и Эйлер. Их жизнь и научная деятельность, СПб, 1892; Тимченко И., Основания теории аналитических функций.... ч. 1 [вып. 1-3], Одесса, 1892-99 (Записки Математич. отд. Новороссийского об-ва естествоиспытателей, т. 12, 16. 19); Cantor M., Vorlesungen über Geschichte der Mathematik, Bd 3-4, 2 Aufl., Lpz. 1901 - 1908; Протоколы заседаний Конференции имп. Академии наук, с 1725 по 1803 г., т. 1-4, СПб, 1897-1911; Festschrift zur Feier des 200. Geburtstages Leonhard Eulers, Lpz., 1907 (Abhandlungen zur Geschichte der mathematischen Wissenschaften mit Einschlnss ihrer Anwendungen, H, 25); Pasquier L.-G. du, Léonard Euler et ses amis, P., 1927; Spiess О., Leonhard Euler..., Prauenfeld, 1929; Леонард Эйлер 1707-1783. Сборник статей и материалов к 150-летию со дня смерти, М.-Л., 1935 (Труды Института истории науки и техники. Серия 2, вып. 1); Историко-математические исследования, вып. 7, М., 1954 (см. раздел Леонард Эйлер), Mихайлов Г. К., Леонард Эйлер, "Известия Акад. наук СССР. Отд. технич. наук", 1955, № 1 (имеется библиография трудов Э. и литература о нем); Winter E., Die Registers der Berliner Akademie der Wissenschaften 1746-1766, В., 1957; История естествознания в России, ч. 1, т. 1, М., 1957.