* Данный текст распознан в автоматическом режиме, поэтому может содержать ошибки
108 Сообразно этому мы можемъ сказать С о в о к у п н о с т ь ф о р м у л ъ с ф е р и ч е с к о й т р и т о н о м е т р i и и н в аpiaHTHa о т н о с и т е л ь н о г р у п п ы ^> , т. е. о н ъ с о х р а н я ю т с я , к о г д а мы п р и м е н я е м ! » к ъ н и м ъ с у б с т и т у ц 1 и э т о й г р у п п ы .
2
Дал he, ц и к л и ч е с к а я и е р е м ъ ч ц е ш я также о б р а з у ю т ъ группу 3-го порядка (J . Если мы обозначимъ двойной циклъ
3
(й
be
а р
у
( t Z
Ь с а ,9 , a)
3
& *• & К " " ^
<
}
черезъ С. то группа (5 состоитъ и з ъ подстановокъ С, (Л С
3 3
/. триго
П о о т м о in е п i ю к ъ г р у п п е ( i ф о р м у л ы с ф е р и ч е с к о й нометрш также остаются инвар!антными
Но группа представляетъ собой только дЬлитель группы в с е х ъ перестановок!» трехъ паръ величинъ (а, и (Ь, (с, у). Относительно этой группы 6-го порядка наша система ф о р м у л ъ также иивар1антна, хотя этимъ ея свойством!» мы не пользовались. 11, Мы обращаемся теперь къ собственным!- т р у п н а м ъ п о д с т а н о в о к ь . Д о сихъ п о р ъ мы разематривали слъдуюния подстановки: 1) Подстановки Д / системы Ш ( § 46, 2 ) ; 2) подстановки V и Л
Г/
системы 91 и &Л& (§ 46, 3 ) ;
3) подстановки, которыя получаются путемъ составлешя . произво дящих!» подстановокъ А&,, Е , Л" , Е Ц Ег> E въ произвольныхь комбинащяхъ; совокупность этихъ последних ь подстановокь мы будем ь впредь обозначать черезъ (М.
u 2 3 : t
В ъ виду того, что было изложено въ п. п. 1 и 2 § 48-го, мы мо жемъ представить самую о б щ у ю подстановку системы (sS въ в и д е :
E^H^H^E^EPEJ
0&i> i& > с
2
ъ
3
Х
ь
3
с,,
О, 1).
Согласно определенно п. 6. мы можемъ теперь сказать: К а ж д а я и з ъ с и с т е м ! » 9)J, 91, & п р е д с т а в л я е т ъ нечную группу. собой безко-
Напротив!», система 91& не представляетъ собой группы въ смысле определешя, даннаго въ п 6. Если мы, однако, обозначимъ черезъ V какую-либо одну изъ подстановокъ 9 1 т о система 9Г можетъ быть