ИНТЕГРАЛ
- одно из центральных понятий математич. анализа и всей математики, возникновение к-рого связано с двумя задачами: о восстановлении функции по ее производной (напр., с задачей об отыскании закона движения материальной точки вдоль прямой по известной скорости этой точки); о вычислении площади, заключенной между графиком функции f(x)на отрезке и осью абсцисс (к этой же задаче приводит вычисление работы, произведенной силой за промежуток времени
и другие вопросы).
Указанные две задачи приводят к двум видам И.: неопределенному и определенному. Изучение свойств и вычисление этих связанных между собой видов И. составляет задачу интегрального исчисления.
В ходе развития математики и под влиянием потребностей естествознания и техники понятия неопределенного и определенного И. подвергались ряду обобщений и изменений.
Неопределенный интеграл. Первообразной функции f (х)одного переменного хна интервале а<х наз. любая функция F(x), производная к-рой для любого хиз этого интервала равна f(x). Очевидно, что если F(x)является первообразной функции f(x)нa интервале а
Согласно основной теореме интегрального исчисления, для каждой непрерывной на интервале a
Определенный интеграл. Понятие определенного И. вводится либо как предел интегральных сумм (см. Ноши интеграл, Римана интеграл, Лебега интеграл, Колмогорова интеграл, Стилтьеса интеграл), либо в случае, когда заданная функция f(x)определена на нек-ром отрезке [ а, b]и имеет на нем первообразную F, как разность ее значений на концах рассматриваемого отрезка F(b) - F(a). Определенный И. от функции f(x)на отрезке [ а, b] обозначают Определение И. как предела интегральных сумм в случае непрерывных функций было сформулировано О. Коши (А. Саuchy) в 1823. Случай произвольных функций был изучен Б. Риманом (В. Riemann, 1853). Существенное продвижение в теории определенного И. принадлежит Г. Дарбу (G. Darboux, 1879), к-рый ввел в рассмотрение наряду с интегральной суммой Римана верхнюю и нижнюю суммы (см. "Дарбу сумма"). Необходимое и достаточное условие интегрируемости по Риману разрывных функций в законченной форме установил (1902) А. Лебег (Н. Lebesgue).
Между определенным И. от непрерывной на отрезке [а, b]функции f(x)и неопределенным И. (или первообразной) этой функции существует следующая связь:
1) если F(x)- любая первообразная функции f(x), то справедлива формула Ньютона - Лейбница
2) для любого хиз отрезка [ а, b] неопределенный И. непрерывной функции f(х)записывается в виде
где С- произвольная постоянная. В частности, определенный И. с переменным верхним пределом
представляет собой первообразную функцию f(х). Для введения определенного И. от функции f(x)по отрезку [ а, b]в смысле Лебега разбивают множество значений уна частичные отрезки точками ...f(x)<yi, а через m( М i) - меру множества М i в смысле Лебега. Интегральную сумму Лебега функции f(x)на отрезке [ а, b] определяют равенством
где hi - любое число из отрезка
Функцию f(x)наз. интегрируемой в смысле Лебега на отрезке [а, b], если существует предел ее интегральных сумм (2) при стремлении к нулю максимальной из разностей у i-yi-1, т. е. если существует такое число I, что для любого e>0 найдется d>0 такое, что при единственном условии ( у i -у i-1)
Вместо отрезка [ а, b]можно рассматривать произвольное множество, измеримое относительно некоторой неотрицательной полной счетно аддитивной меры. Возможно и другое введение интеграла Лебега, когда этот И. первоначально определяют на множестве так наз. простых функций (т. е. измеримых функций, принимающих не более счетного множества значений), а затем с помощью операции предельного перехода вводят для произвольной функции, представляющей собой предел равномерно сходящейся последовательности простых функций (см. Лебега интеграл).
Каждая интегрируемая в смысле Римана функция является интегрируемой и в смысле Лебега. Обратное неверно, ибо существуют разрывные на множестве положительной меры и вместе с тем интегрируемые в смысле Лебега функции (напр., функция Дирихле).
Для интегрируемости по Лебегу ограниченной функции необходимо и достаточно, чтобы эта функция принадлежала классу измеримых функций. Функции, встречающиеся в математич. анализе, как правило, измеримы. Это означает, что интеграл Лебега обладает общностью, исчерпывающей потребности анализа.
Интеграл Лебега охватывает и все случаи абсолютно сходящихся несобственных интегралов.
Общность, достигнутая определением И. в смысле Лебега, весьма существенна во многих вопросах современного математич. анализа (теория обобщенных функций, определение обобщенных решений дифференциальных уравнений, изоморфизм гильбертовых пространств L2 и l2, эквивалентный так наз. теореме Рисса - Фишера в теории тригонометрических или произвольных ортогональных рядов,- все эти теории оказались возможными только при понимании И. в смысле Лебега).
Первообразную в смысле Лебега естественно определить с помощью равенства (1), в к-ром И. понимается в смысле Лебега. При таком понимании соотношение F'(x)=f(x)будет справедливо всюду, кроме, может быть, множества, имеющего меру, равную нулю.
Другие обобщения понятия интеграла. В 1894 Т. Стилтьесом (Т. Stieltjes) было дано другое важное для приложений обобщение интеграла Римана (получившее название интеграла Стилтьеса), в к-ром рассматривается интегрируемость одной функции f(x), определенной на некотором отрезке [a, b], относительно другой функции, определенной на том же отрезке. Интеграл Стилтьеса функции f(х)относительно функции U(х)обозначают символом
Если U(х)имеет ограниченную и интегрируемую в смысле Римана производную U'(х), то интеграл Стилтьеса сводится к интегралу Римана по формуле
в частности при и(х)=х+С интеграл Стилтьеса (3) является интегралом Римана
Однако для приложений интересен случай, когда интегрирующая функция U(x)не имеет производной. Примером может служить рассмотрение в качестве U(x)спектральной меры при изучении спектральных разложений.
Криволинейный интеграл
вдоль кривой Г, определяемой уравнениями x=j(t), y=y(t), представляет собой частный случай интегралa Стилтьеса, так как может быть записан в виде
Дальнейшим обобщением понятия И. послужило интегрирование по произвольному множеству в пространстве любого числа измерений. В самом общем случае удобно рассматривать И. как функцию от того множества М, по к-рому производится интегрирование (см. Функции множеств )вида
,
где U- также некоторая функция множества М(в частном случае его мера), а точка принадлежит множеству М, по к-рому идет интегрирование. Частными случаями такого рассмотрения являются кратные интегралы и поверхностные интегралы.
Другим обобщением понятия И. является понятие несобственного интеграла.
В 1912 А. Данжуа (A. Denjoy) ввел понятие И. (см. "Данжуа интеграл"), применимое ко всякой функции f(x), являющейся производной нек-рой функции F(x). Это позволило привести конструктивное определение И. к такой степени общности, при к-рой оно целиком отвечает задаче разыскания неопределенного И., понимаемого в смысле первообразной.
Лит.:[1] Ильин В. А., Позняк Э. Г., Основы математического анализа, ч. 1-2, М., 1971-73; [2] Колмогоров А. Н., Фомин СВ., Элементы теории функций и функционального анализа, 4 изд., М., 1976; [3] Кудрявцев Л. Д., Математический анализ, т. 1-2, 2 изд., М., 1973; [4] Никольский С. М., Курс математического анализа, т. 1-2, 2 изд., 1975; [5] Смирнов В. И., Курс высшей математики, т. 5, М., 1959; [6] Лебег А., Интегрирование и отыскание примитивных функций, пер. с франц., М.-Л., 1934.
В. А. Илъин.
А-ИНТЕГРАЛ - одно из обобщений интеграла Лебега, данное Е. Титчмаршем [1] для интегрирования функций, сопряженных к суммируемым. Измеримую функцию f(x)наз. А - интегрируемой на [ а, b], если
и существует предел
где
Число I наз. A-интегралом и обозначают
Лит.:[1]Titсhmаrsh E. G., "Proa London Math. Soc", 1929, № 29, с 49-80; [2] Виноградова И. А., Скворцов В. А., в кн.: Итоги науки. Математический анализ. 1970, М., 1971 , с. 65 - 107.
И. А. Виноградова.