Статистика - Статей: 909699, Изданий: 1065

Искать в "Математическая энциклопедия..."

ДЕКАРТОВ ОВАЛ





- плоская кривая, расстояния r1 и r2 каждой точки Рк-рой до двух фиксированных точек F1 и F2 (фокусов) связаны неоднородным линейным уравнением

r1+тr2 = а.

Д. о. можно определить при помощи однородного линейного уравнения

r1 + mr2+nr3=0,

где r3- расстояние до третьего фокуса F3 лежащего на прямойF1F2.

Д. о. в общем случае состоит из двух замкнутых линий, одна из к-рых объемлет другую (см. рис.). В прямоугольных декартовых координатах уравнение Д. о. имеет вид:

где d- длина отрезка F1F2. При m=1 и a>d Д. о. представляет собой эллипс, при т=-1 и am=a/d,- Паскаля улитку. Впервые Д. о. исследован Р. Декартом (R. Descartes) в связи с задачами оптики (см. [1]).

Лит.: [1] ДекартР., Геометрия, пер. [с франц. и латин.], М.-Л., 1938; [2] Савелов А. А., Плоские кривые, М., 1960.

Е. В. Шикин.



Еще в энциклопедиях


В интернет-магазине DirectMedia