ГЕОМЕТРИЯ
- часть математики, первоначальным предметом к-рой являются пространственные отношения и формы тел. Г. изучает пространственные отношения и формы, отвлекаясь от прочих свойств реальных предметов (плотность, вес, цвет и т. д.). В последующем развитии предметом Г. становятся также идругие отношения и формы действительности, сходные с пространственными. В современном общем смысле Г. объемлет любые отношения и формы, к-рые возникают при рассмотрении однородных объектов, явлений, событий вне их конкретного содержания и к-рые оказываются сходными с обычными пространственными отношениями и формами. Напр., рассматривают расстояния между функциями, отвлекаясь от того, каковы специальные свойства этих функций и какие реальные процессы эти функции описывают (см., напр., Метрическое пространство, Функциональный анализ).
Исторический очерк. Возникновение Г. относится к глубокой древности. Оно было обусловлено практик, потребностями (измерением земельных участков, объемов тел). Простейшие геометрия, сведения и понятия были известны еще древним египтянам (нач. 2-го тыс. до н. э.). Геометрич. утверждения формулировались тогда в виде правил, логич. доказательства к-рых либо отсутствовали, либо были примитивными. Начиная с 7 в. до н. э. и до 1 в. н. э., развитие Г. происходило в основном в Др. Греции. Здесь накапливались сведения о метрич. соотношениях в треугольниках, измерениях площадей и объемов, пропорциях и подобии фигур, конич. сечениях, задачах на построение. В то время появились уже сравнительно строгие логич. доказательства геометрич. утверждений. Собранием известных фактов Г. и их логической систематизацией явились "Начала" Евклида (ок. 300 до н. э.). В этом сочинении были сформулированы основные положения (аксиомы) Г., из к-рых при помощи логич. рассуждений выводились различные свойства простейших фигур на плоскости и в пространстве. Здесь впервые сложились основы аксиоматич. метода. Развитие астрономии и геодезии (1 - 2 вв. н. э.) привело к созданию плоской и сферич. тригонометрии.
Дальнейшее развитие Г., вплоть до 17 в., происходило не столь интенсивно. Возрождение наук и искусств в Европе способствовало развитию Г. Теория перспективы, задача к-рой состояла в изображении тел на плоскости (см. "Начертательная геометрия"), была в центре внимания художников и архитекторов. Эта потребность привела к зарождению проективной геометрии - раздела Г., в к-ром изучаются свойства фигур, инвариантные относительно так наз. проективных преобразований.
Совершенно новый подход к решению геометрнч. вопросов был предложен в 1-й пол. 17 в. Р. Декартом (R. Descartes). Им был создан метод координат, позволивший привлечь в Г. методы алгебры, а в последующем и анализа. Начиная с этого момента Г. бурно развивается. Появляется "аналитическая геометрия", в к-рой методами алгебры исследуются кривые и поверхности, задаваемые алгебраич. уравнениями. Применение в 18 в. Л. Эйлером (L. Euler) и Г. Монжем (G. Monge) методов математич. анализа в Г. заложило основы классической дифференциальной геометрии. Ее ведущие разделы: теория кривых и теория поверхностей- интенсивно развивались и обобщались в работах К. Гаусса (С. Gauss) и др. геометров. В результате взаимодействия Г. с алгеброй и анализом в дальнейшем возникли специальные исчисления, удобные для использования в Г. и др. разделах математики ( векторное исчисление, тензорное исчисление, метод дифференциальных форм).
Разделы Г., не опирающиеся на методы алгебры и анализа и оперирующие непосредственно с геометрич. образами, получили назв. синтетической геометрии.
Предмет, основные разделы геометрии, связь с другими областями математики. Свои первоначальные шаги Г. делала как физич. наука, ее первые результаты описывали свойства физически наблюдаемых величин. Затем, до 2-й пол. 19 в., предметом Г. были отношения и формы тел пространства, свойства к-рого определялись аксиомами, сформулированными Евклидом (см. "Евклидова геометрия"). Пространство Евклида столь хорошо отражает простейшие физич. наблюдения, что до 19 в. оно как бы отождествлялось с физич. пространством. В 1826 Н. И. Лобачевский построил Г. (см. Лобачевского геометрия), в основу к-рой была положена система аксиом, отличающаяся от системы аксиом Евклида только аксиомой о параллельных прямых. В результате появилась логически непротиворечивая Г., существенно отличная от евклидовой. Стало ясно, что в математике возможно построение разнообразных пространств с содержательной Г. (см., напр., "Неевклидовы геометрии"). Наряду с этим сложилась идея многомерного пространства. Следующим новым шагом в Г. была идея Б. Римана (В. Riemann), к-рый в 1854 сформулировал обобщенное понятие пространства как непрерывной совокупности любых однородных объектов или явлений и ввел пространства, измерение расстояний (метрика) в к-рых производится по нек-рому заданному закону "бесконечно малыми шагами". Иными словами, задается определенная функция, к-рая выражает длину пути точки через диффередциалы координат при малом ее смещении. Развитие идеи Римана привело к дальнейшим разнообразным обобщениям способов задания метрики и рассмотрению Г. соответствующих пространств (см. Риманово пространство, Финслеррво пространство). При исследовании физич. пространства, различных меха-нич. систем или вообще систем каких-либо однородных физич. объектов выбор подходящего математич. пространства и сопоставление его элементов-объектам изучаемой системы зависят от характера этой .системы. Качество такого математич. моделирования проверяется опытом. Разные объекты или одни и те же объекты при разной детальности исследования могут требовать разных пространств. В общей физич. теории пространства-времени-тяготения (см. "Относительности теория").используется одна из разновидностей римановой Г.
Одним из стимулов развити-я и систематизации Г. явилась ее связь с теорией групп. Ф. Клейн (F. Klein) в эрлангенской программе(1872) так определил содержание Г.: дано многообразие и в нем группа преобразований. Требуется развить теорию инвариантов этой группы. Напр., теория инвариантов ортогональной группы определяет евклидову Г. В такую классификацию хорошо укладываются также аффинная геометрия, конформная геометрия, проективная геометрия. Но риманова Г. не может быть определена таким образом. В связи с этим Э. Картан (Е. Cartan) ввел пространства, в к-рых соответствующая группа преобразований действует только локально, в бесконечно малой окрестности; таковы римановы пространства и пространства с различной связностью. Групповой подход с точки зрения непрерывных групп преобразований был предложен С. Ли (S. Lie).
Параллельно в конце 19 в. развивался логич. анализ основ Г. Выяснение непротиворечивости, минимальности и полноты систем аксиом Г. суммировано Д. Гильбертом (D. Hilbert) в книге "Основания геометрии" (1899) (см. "Основания геометрии").
Современное понимание пространства как непрерывной совокупности однородных объектов (явлений, состояний, фигур, функций) обусловлено глубокой взаимосвязью Г. с другими областями математики. Наиболее отчетливо эта связь проявилась в развитии Г. в 20 в., когда Г. стала широко разветвленной, а ее границы в связи с усилением единства математики стали менее четкими. Теперь пространство в математике понимается как множество, снабженное нек-рой структурой, т. е. нек-рыми отношениями между его элементами или подмножествами.
Изучение простейшей весьма общей структуры, позволяющей говорить о непрерывности, привело к выделению из Г. большой самостоятельной части математики - топологии. Г. предполагает наличие более богатых структур. При использовании аналитич. аппарата дополнительные структуры (связности, метрики, конформные и симплектич. структуры и т. п.) задают обычно с помощью тензорных (в частности - векторных) или иных полей.
Исследование ряда геометрич. структур относится и к другим частям математики. Это связано с преобладающим методом исследования. Так, "алгебраическая геометрия" изучает алгебраич. многообразия и связанные с ними алгебраич. и арифметич. проблемы. Алге-браизация геометрич. закономерностей позволяет строить Г. над произвольными полями (в том числе над конечными - конечные Г.). Эти разделы - части алгебры. Бесконечномерные пространства изучаются в функциональном анализе. Однако во всех этих областях математики остается полезным геометрич. способ мышления, при к-ром непосредственно оперируют наглядными образами, без перехода к исчислениям.
Наиболее традиционным предметом Г. остаются пространства, являющиеся многообразиями с той или иной дополнительной структурой, многообразия различных фигур, в частности - подмногообразий в них и полей разного рода объектов на многообразиях. Многие разделы Г. можно'характеризовать типом пространств и типом объектов в них, являющихся предметом исследования. Напр., глобальная Г. дифференцируемых многообразий изучает многообразия с гладкими структурами, гладкие многообразия и гладкие поля на них, причем изучает их в целом, на полных многообразиях. "Геометрия в целом" изучает сходные вопросы для кривых и поверхностей при допущении негладкости и особенностей; она ведет свое начало от теории выпуклых тел, основы к-рой были заложены Г. Минковским (Н. Minkowski). В интегральной геометрии исследуются меры на совокупностях геометрич. объектов. "Комбинаторная геометрия" изучает расположения геометрич. фигур топологич. и метрич. средствами (напр., плот-нейшие упаковки и редчайшие покрытия) в евклидовом, гиперболич. и эллиптич. пространствах разного числа измерений.
Развитие Г., ее приложения, развитие геометрич. восприятия абстрактных объектов в различных областях математики и естествознания свидетельствуют о важности Г. как одного из самых глубоких и плодотворных по идеям и методам средств познания действительности.
Лит.: [1] Александров А. Д., Геометрия, БСЭ, 3 изд., т. 6; [2] Математика, ее содержание, методы и значение, М., 1956, т. 1, с. 5-69, 180-245; т. 2, с. 97-144; [3] Ван дер Варден Б. Л., Пробуждающаяся наука, пер. с голл., М., 1959; [4] Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; [5] Клейн Ф., Лекции о развитии математики в 19 столетии, пер. с нем., М.- Л., 1937; [6] Стройк Д. Я., Краткий очерк истории математики, пер. с нем., 2 изд., М., 1969; [7] Гильберт Д., Основания геометрии, пер. с нем., М.- Л., 1948; [8] Об основаниях геометрии, М., 1956; [9] Ефимов Н. В., Высшая геометрия. 5 изд., М., 1971; [10] Клейн Ф., Высшая геометрия, пер. с нем., М.-Л., 1939.
См. также лит. при статьях об отдельных геометрических дисциплинах. Э. Г. Позняк.
Энциклопедия элементарной математики
Толковый словарь руссого языка под ред. Д.Н. Ушакова
Малый академический словарь
Этимологический словарь русского языка Макса Фасмера
Математическая энциклопедия