Статистика - Статей: 909699, Изданий: 1065

Искать в "Биологический энциклопедический словарь..."

Клетка





КЛÉТКА (cellula, cytus), основная структурно-функциональная единица всех живых организмов, элементарная живая система. Может существовать как отд. организм (бактерии, простейшие, нек-рые водоросли и грибы) или в составе тканей многоклеточных животных, растений, грибов. Лишь вирусы представляют собой неклеточные формы жизни. Содержимое К. – протоплазма. В каждой К. имеется генетич. аппарат, к-рый в К. эукариот заключён в ядре, отделённом мембранами от цитоплазмы, а в К. прокариот, лишённых оформленного ядра, в нуклеоиде. К. эукариот способны к самовоспроизведению путём митоза; половые К. образуются в результате мейоза.

Размеры К. варьируют от 0,1–0,25 мкм (нек-рые бактерии) до 155 мм (яйцо страуса в скорлупе); диам. большинства эукариотных К. лежит в пределах 10–100 мкм. Многообразные функции К. выполняются специализир. внутриклеточными структурами – органоидами (часто неточно наз. органеллами). Универсальные органоиды эукариотных К. в ядре – хромосомы, в цитоплазме – рибосомы, митохондрии, эндоплазматич. сеть, комплекс Гольджи, лизосомы, клеточная мембрана. Во многих К. присутствуют также мембранные структуры, способствующие поддержанию формы К.,– микротрубочки, микрофибриллы и разл. включения.

Важнейшие химич. компоненты К. – белки, включая ферменты,– содержатся как в К., так и в жидких средах организма, но синтезируются они только в К. Характерная особенность К. – пространств, организация химич. процессов (компартментализация, или компартментация). Напр., процесс клеточного дыхания у эукариот происходит только на мембранах митохондрий, синтез белка – на рибосомах. Концентрирование ферментов, упорядоченное их расположение в структурах ускоряет реакции, организует их сопряжение (принцип конвейера), разделяет разнородные процессы. Микрогетерогенность, присущая строению К., позволяет синтезировать разл. вещества из одних и тех же предшественников в одно время в миниатюрном общем объёме. Принцип компактности, присущий всему метаболизму К., особенно выражен в структуре ДНК: 6 × 10-12 г ДНК яйцеклетки человека кодируют свойства всех его белков. Внутри К. непрерывно поддерживается определ. концентрация ионов, отличная от их концентрации в окружающей К. среде. Образуя впячивания клеточной мембраны, к-рые затем замыкаются и отделяются внутрь К. в виде пузырьков, К. способны захватывать из среды капельки с крупными молекулами, включая белки (пиноцитоз) или даже вирусы и небольшие К. (фагоцитоз).

К. растений поверх клеточной мембраны, как правило, покрыты твёрдой клеточной оболочкой (может отсутствовать у половых К.). Оболочки имеют поры, через к-рые с помощью выростов цитоплазмы соседние К. связаны друг с другом. У К., прекративших свой рост, оболочки часто пропитываются лигнином, кремнезёмом или др. веществами и становятся более прочными, что определяет механич. свойства растения. К. нек-рых растит. тканей отличаются особенно прочными стенками, сохраняющими свои скелетные функции и после гибели К. Дифференцированные растит. К. имеют неск. или одну центр. вакуоль, занимающую обычно бóльшую часть объёма К. и содержащую раствор разл. солей, углеводов, органич. к-т, алкалоидов, аминокислот, белков, а также запас воды. В цитоплазме растит. К. имеются специальные органоиды – пластиды. Комплекс Гольджи в растит. К. представлен рассеянными по цитоплазме диктиосомами.

Иллюстрация

Все К. эукариот имеют сходный набор органоидов, сходно регулируют метаболизм, запасают и расходуют энергию, сходно с прокариотами используют генетич. код для синтеза белков. У эукариотных и прокариотных К. принципиально сходно функционирует и клеточная мембрана. Общие признаки К. свидетельствуют о единстве их происхождения. Однако разные К. организма сильно различаются по размерам и форме, числу тех или иных органоидов, набору ферментов, что обусловлено, с одной стороны, кооперированием К. в многоклеточном организме, с другой – выполнением мн. функций организма различно специализированными К. Различия в структуре и функциях одноклеточных организмов в значит. степени связаны с их приспособлениями к среде обитания. Довод в пользу единого происхождения К. прокариот и эукариот – принципиальное сходство генетич. аппарата. Но у разл. одноклеточных могли быть разные прокариотные предки. Согласно гипотезе симбиогенеза, одни прокариоты преобразовались внутри К.-хозяина в митохондрии, другие – в хлоропласты и стали самовоспроизводиться как органоиды. Рассматривается и др. гипотеза – о постепенном развитии собственных структур прокариотной К. в процессе её превращения в эукариотную.

У всех К. одного организма геном не отличается по объёму потенциальной информации от генома оплодотворённой яйцеклетки. Это доказывают опыты с пересадкой ядра узкоспециализированной К. в цитоплазму энуклеированной яйцеклетки, после чего может развиться нормальный организм. Различия в свойствах К. многоклеточного организма обусловлены неодинаковой активностью генов, что обусловливает разл. дифференцировку К., в результате к-рой одни К. становятся возбудимыми (нервные), другие приобретают сократимые белки, образующие миофибриллы (мышечные), третьи начинают синтезировать пищеварит. ферменты или гормоны (железистые) и т.д. Многие К. полифункциональны, напр. К. печени синтезируют разл. белки плазмы крови и жёлчь, накапливают гликоген и превращают его в глюкозу, окисляют чужеродные вещества (в т.ч. и мн. лекарства). Во всех К. активны гены общеклеточных функций, т.о., сходных признаков в разных К. значительно больше, чем признаков специальных. К. близкого происхождения и сходных функций образуют ткани (см. "Гистогенез").

Регулирующие факторы внутри К. – метаболиты К., ионы, к-рые действуют или на гены, приводя к изменению кол-ва фермента, или на сам фермент, изменяя его активность. Регуляция может осуществляться по принципу обратной связи, когда продукт реакции определяет её интенсивность. В результате такой саморегуляции поддерживается оптимальный уровень мн. жизненно важных внутриклеточных процессов, иногда даже при значит. изменениях во внеклеточной среде. Регулирующие факторы вне К. – влияния К. друг на друга в пределах прямых контактов или изменение активности К. нервными или гормональными сигналами – необходимы для поддержания индивидуальности К. В условиях изоляции в культуре К. утрачивают мн. черты специализации.

В основе самовоспроизведения эукариотных К. лежит "митоз". В организме человека ок. 1014 К. В нек-рых тканях число К. постоянно в течение всей жизни организма. В этих тканях делятся относительно малодифференцированные К., резерв к-рых самоподдерживается, а одна из дочерних К. дифференцируется. У человека, напр., ежедневно погибает ок. 70 млрд. К. кишечного эпителия и 2 млрд. эритроцитов. Во мн. др. тканях в клеточный цикл входят вполне дифференцированные К., и в этих случаях митоз часто не завершается делением К., а ограничивается удвоением хромосом (подробнее см. "Полиплоидия") или вообще не начинается и К. выходит из цикла после удвоения хроматид (см. "Политения"). Нек-рые ядра не входят в цикл в течение всей жизни дифференцированной К. (напр., нейроны, волокна скелетных мышц), и тогда продолжительность жизни К. соответствует жизни организма. Минимальная продолжительность жизни К. человека 1–2 дня (К. кишечного эпителия). Во всех К. происходит интенсивное обновление веществ и структур. Огромное кол-во К. в каждой ткани, объединённых метаболическими и регуляторными процессами, их постоянное внутреннее обновление обеспечивают надёжность работы органов многоклеточного организма. Наука о К. – цитология. Историю учения о К. см. в ст. "Клеточная теория".


Ченцов Ю. С., Общая цитология, 2 изд., М., 1984; Иост X., Физиология клетки, пер. с англ., М., 1975; Ροлан Ж.-К., Селоши Α., Селоши Д., Атлас по биологии клетки, пер. с франц., М., 1978; Свенсон К., Уэбстер П., Клетка, пер. с англ., М., 1980; Xэм Α., Κοрмок Д., Гистология, пер. с англ., т. 1, М., 1982; Молекулярная биология клетки, пер. с англ., т. 1–5, М., 1986–87.
Комбинированная схема строения эукариотической клетки. А – клетка животного происхождения; Б – растительная клетка: 1 – ядро с хроматином и ядрышком; 2 – клеточная (плазматическая) мембрана; 3 – клеточная оболочка; 4 – плазмодесмы; 5 – гранулярная эндоплазматическая сеть; 6 – гладкая (агранулярная) эндоплазматическая сеть; 7 – пиноцитозная вакуоль; 8 – комплекс Гольджи; 9 – лизосома; 10 – жировые включения в гладкой эндоплазматической сети; 11 – центриоль и микротрубочки центросферы; 12 – митохондрии; 13 – полирибосомы гиалоплазмы; 14 – вакуоли; 15 – хлоропласты



Еще в энциклопедиях


В интернет-магазине DirectMedia