* Данный текст распознан в автоматическом режиме, поэтому может содержать ошибки
103
§ 48
7. Если мы теперь эквивалентные треугольники будем ь вновь разсматривать, какъ различные, то мы сможемъ следующимь образомъ: С о в о к у п н о с т ь в с е х ъ т р е у г о л ь н и к о в i>, п р и н а д л е ж а щ и х Е о д > н о м у и т о м у ж е р о д у , р а с п а д а е т с я па 64 и 64 г р у п п ы несобственныхъ лучить всъ эти т р е у г о л ь н и к и , группы собственных ь Мы м о ж е м ъ по приметреугольниковъ. выразить наши результаты
если к ъ о д н о м у и з ъ нихъ
н и м ъ 64 п о д с т а н о в к и , с о д е р ж а щ а я с я в ъ с х е м е
(С
и
?2> Сз&у
c
e» a = °»
fc
^
и з ъ 64 т р е у г о л ь н и к о в ъ , к ъ к о т о р ы м ь мы т а к и м ъ о б р а з о м ъ п р и д е м ъ , мы п о л у ч и м ъ в с е р о д с т в е н н ы е ственные треугольники треугольники при помощи исходнаго треуголь подста п о д с т а н о в о к ъ (Щ и ( 9 Г ) ; п р и э т о м ъ п о д с т а н о в к и (91) д а ю т ъ с о б отъ собственнаго ника и несобственные о т ъ нссобственнаго; кь несобственнымъ и обратно Если мы имели первоначально Э й л е р о в ъ треугольникъ, стороны и углы котораго изменяются между 0 и JT ТО подстановка (S4R) даетъ все вообще существукмще собственные треугольники, а подстановка (S9V) даетъ в с е несобственные треуголЕ>ники.
}
напротивъ,
н о в к и 01&) п р и в о д я т ъ о т ъ с о б с т в е н н а г о и с х о д н а г о
треугольника
Что при этомъ мног ократно появляются одни и те же по типу тре угольники, такъ какъ подстановки Е/, не вносить, по существу, ничего но ва го, - мы у ж е указали выше. 8. В ъ заключение мы у д е л и м ъ еще место замечанно о возможности и другихъ обобщешй понятш о треугольнике. При томъ поняпи о тре угольнике, которое установлено С т ю д и , точкой отправлешн все-таки служитъ г е о м е т р и ч е с к 1 й о б р а з ь , хотя с у щ е с т в е н н ы м ! » з д е с ь и при знается нечто а н а л и т и ч е с к о е , именно — в е л и ч и н ы элементовъ а, Ъ, О «, /V, у. Отсюда остается у ж е только одинъ шагъ к ъ тому, чтобы совер шенно отвтечься о т ъ геометрическаго образа и дать чисто аналитическое определение. „ П о д ъ сферическимъ треугольникомъ мы будемъ разуметь сово купность шести величинъ а, с, ft, у, которыя связаны между собою уравнешями (I) (стр. 67), выражающими теорему косинусовъ на с ф е р е " Такое обобщение даетъ возможность ввести также треугольники съ к о м п л е к с н ы м и с т о р о н а м и и у г л а м и . Ш и л л и н г у *) удалось дать геометрическую интерпретацно даже для такихъ комплексныхъ греугол!>ч
*) S c h i l l i n g , „Beitrage zur geom. Theorie der Schwarzschen -r-Funktion". MathAnn., Bd. 44. - С р . также Schoenflies, „Uber Kreisbogendreiecke" и т. д. — тамъ же.