
* Данный текст распознан в автоматическом режиме, поэтому может содержать ошибки
РАСПРЕДЕЛЕНИЕ ТЕПЛА И ПАРА В ТОЛЩЕ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ Рассматривать прохождение тепла через наружные стены проще, если взять за систему исчисления шкалу температур Цельсия, а теплоту представить в виде векторов. В такой системе начало координат совпадает с нулем градусов, а положительная и отрицательная температуры будут представлены в виде разнонаправленных векторов. Если физические процессы, происходящие в стене, рассматривать в шкале Кельвина, то описание будет менее наглядным. В самый холодный период года на наружную стену действуют пара сил количества теплоты: отрицательная с улицы и положительная со стороны помещения. Строительные конструкции, как и всякие другие физические тела, обладают теплосопротивлением. Разнонаправленные векторы количества теплоты, попадая в толщу стены, встречают на своем пути теплосопротивление материала и теряют свою силу, постепенно затухая. Таким образом, одна часть стены со стороны улицы, находящаяся в зоне отрицательных температур, промерзает, другая часть, находящаяся в зоне положительных температур, аккумулирует тепло (рис. 2). Мы знаем, что температура наружного воздуха непостоянна во времени, она то падает, то поднимается. Поэтому положение нулевой изотермы в толще стены не имеет постоянного места, эта изотерма перемещается вместе с изменением внешней и внутренней температуры воздуха. В толстых стенах, имеющих большое теплосопротивление, векторы количества теплоты затухают сами. В тонких стенах они встречаются друг с другом и, имея разные знаки (+/ ), либо тоже затухают, либо один вектор пересиливает. В случае победы тепла над холодом стена полностью прогревается и вытесняет нулевую изотерму наружу. В этом варианте ограждение (стена) становится нагревательным прибором по отношению к улице, то есть мы тратим драгоценное тепло, за которое платим деньги, на отопление улицы. Если в борьбе двух векторов побеждает хо- лодный, то изотерма нулевых температур смещается внутрь помещения, стена промерзает насквозь и становится «холодильником» по отношению к помещению. Задача проектировщиков была в том, чтобы при расчетной температуре внутреннего и любой температуре наружного воздуха, характерной для вашего региона строительства, подобрать такую толщину стены, чтобы в холодный период года изотерма нулевых температур всегда находилась в толще ограждения, дабы стена не получилась «холодильником» или «радиатором». Второе условие, которое учитывали при проектировании, температура внутренней поверхности стены не должна отличаться от температуры внутреннего воздуха более чем на 4°С. Иначе наступает дискомфорт, от стены «тянет холодом», хотя она при этом не промерзает и на ней не растет грибок. Похожая картина наблюдается после установки пластиковых окон. От герметично установленного окна «дует», хотя никаких щелей нет. Просто температура на стеклах окна ниже температуры в помещении более чем на 4°С. Вне зависимости от изменения теплотехнических норм, расчет толщины стен вашего дома велся на температуру наружного воздуха самой холодной пятидневки. Эта величина получена в результате многолетних наблюдений за изменениями погоды в вашем регионе и занесена в СНиП. Температура внутреннего воздуха также регламентируется нормативными документами, в старом СНиПе она равна 18°С, в новом — +20°С. Однако по каким бы нормативным документам не производился теплорасчет, он делался конкретно для вашего региона строительства. Новые нормы направлены только на то, чтобы увеличением толщины стен или введением в их конструкцию эффективных утеплителей добиться снижения энергозатрат на отопление дома. Одновременно с прохождением тепла сквозь стены проходят воздух и водяные пары. Процесс прохождения газов в помещение и из него называется экс и инфильтрацией воздуха сквозь стены. Он происходит из за раз- Рис. 2. Распределение теплоты в стенах различной толщины при увеличении или уменьшении наружных и внутренних температур воздуха 17