* Данный текст распознан в автоматическом режиме, поэтому может содержать ошибки
АНАЛИЗ СТАТИСТИЧЕСКИЙ МНОГОМЕРНЫЙ
35
используются методы кластерного анализа, позволяющие выделить группы объектов, близких друг к другу по значениям измеренных переменных. В основе кластерного анализа лежит вычисление расстояний между объектами. Классификация с обучением применяется, когда критерии классификации неизвестны, но известно количество классов и их типологические особенности. В этом случае может быть сформирована так называемая обучающая выборка, состоящая из реальных объектов, обладающих соответствующими характеристиками, или/и искусственных объектов – моделей «типичных представителей» классов. В обучающей выборке должны присутствовать «представители» всех предполагаемых классов. Классификация конкретного объекта состоит в том, что вычисляется расстояние между ним и объектами из обучающей выборки, и объект причисляется к тому классу, расстояние до которого для него оказалось минимальным. Классификация с обучением осуществляется некоторыми методами кластерного и дискриминантного анализа. Анализу статистических причинных связей в последние годы уделяется особое внимание. Классическим методом для решения таких задач является дисперсионный анализ, в основе которого лежит эксперимент факторный. Начиная с 1960-х годов активно разрабатываются регрессионные и регрессионно-подобные причинные модели, а также техники, позволяющие использовать в этих моделях не только «количественные», но и «качественные» переменные. В настоящее время для исследования причинных связей, в зависимости от характера используемых переменных, применяются методы множественной линейной регрессии, логистической регрессии, дискриминантного анализа и т. п. Эти методы предполагают наличие единственной зависимой переменной и не позволяют исследовать структуру связей между независимыми переменными (предикторами). Структура связей между предикторами может быть учтена в моделях путевого анализа. Наиболее общим является метод линейных структурных уравнений, позволяющий строить сложные модели с большим числом взаимодействующих между собой зависимых и независимых переменных, среди которых могут быть не только наблюдаемые, но