
* Данный текст распознан в автоматическом режиме, поэтому может содержать ошибки
Дин — Дин - 100 - Дин — Дин томъ пхъ усилили, въ 1582 г., Баторип и въ последнее время Русские. Постройка нередоныхъ лерхове продолжается до спхъ п о р ъ . Дипабургъ б ы л е некогда глалп. г о р . воевод ства польской Лппош'п, сущестловавшаго до 1772 г. Д о т о г о бы гь оп ь два раза но пдаети Р у с с к и х ъ : пъ 1570 г. взллъ его Тоапие I V и иь I03f» г. Алексей Михайловиче. У 1сзуит о в е п ы л е здесь монастырь и коллегиуме. Ц ы п е в е Д и п а б у р г е 3 церкви п 7 синагоге. Жителей до 7,500 об. иола, по большей ч а сти в о с п н ы х е . Ярмарки б ы п а ю т е - л е й о д е (съ 5 — 20) п д е к а б р е (се 24 по 4 января). Положение Дипабургп па главкоме пути пае западныхе губергпн ве С л п к т е - П е т е р б у р г е и в е исходлщеме и з г и б е р е к и Д л и н ы , дела СП) его весьма важпыме лоенпыме пупикточъ, усп.шпаюш.нмз», вместе ст» Р и г о ю , о б о рону р. Длины. Справедливость ото го оправ дались 1812 годоме. когда дивинил генерала Рикордл, с р ы в ш а я только что пачлтыл р у с скими укреплсшн к р е п о с т и , принуждена бы да, войсками ИптгешптсГша. отступить Двину к е Озсрпсу. Динамика (енлоучеш'о], часть механики, занимающаяся нзгледоилпигме закотиосе дви лчччил вообице. Самые п р о с т ы е пзъ мтпхе за копой; ь та. которьлме не движении свосме следуете одна материальная точка. Б о л е е с ш ж п ы л движения проиисходлтъ тогда, когда мы будсме разематрпвать дппжепйс пе о т дельной какой-нибудь материальной точки, но систему, т. с. собрание такихъ т о ч е к е , СОСДППС1ИПЫХТ. ме:кду собою и пмеюидпхе взаи)мпое влйшм-. Наконецi», самыГт с л о ж ный I I самьий обилии вопросе о д и п ж е нин состоите ве наследовании движении системил т е л е ве томе случае, когда связь между этими телами не остается постоян ною , а иизмеиияетсл в м е с т е с е времсииеме. :)тоте п о с л е д и т в о п р о с е ве паше время зашимал ь известииеиишпхь математиков!» и р е и ипене окоиичатслыю пашнме соотечественпипкоме, г. Остроградскииме, в е беземертпомъ мемоаре его, напечатанном!», 1838 г., в е э а ппскахе пашей академии, поде загл.-ипемыМсmoire sur les dcplaccmcnls inslaHlancs des syslemcs assujclis a des condilions variables* Иозиаиил древиипхе о законахь движения билли весьма ограничены и начало динамики, и;акъ науки, относится кь поэдииейшему в р е мени. П е р в ы й р а з е уииотрсблепо ииазваиииедпнамики Лепбпицеме, а нервып осповаиийл этой пауки положены Галлиилссмъ : one заметил ь и пзеледооале, п е р в ы й , законы падения сво • б о д и о - п а д а ю щ и х е т е л е н закопьт движения н нхе по пкжлоппиоии плоскости. Законы пиарлболнческаго движения брошепнилхь т е л е и рав и номерное качании маятника о т к р ы т ы т а к ж е Галлилееме. Ученике его Т о р р н ч е л л п , п о томъ Д е к а р т е , Валынсе, запиипмалшйисл инзследопшннлмии о движении сообщаю!льемся нири соудареиии'п т е л ь , п Туи'енсь — трудами сво и ими далеко рпэпннли и доинолннлп Галлплеспил открьип'л иие диниамике. Гугснсу п р н п а д л е ж и т е теория цеинтралыиьихе с и л е , р а э сматрнивасмыхе ве к р у г е . О б о б щ с ш е этой теории распространением?» сл на цеинтральш.ил с и л ы , разематривасмыл прни движении по какииме-пиибудь неринвыме лишлмъ, принадлеж и т ъ П ы о т о н у , пь сочинении котораго:Р1и1оsophiac naluralis p r i n c i p i a m a l b c m a l i c a , peIHICHO множество динамическпхеэадачь, отпослицнхел, преимущественно, к е двиижешюнебесньтхътелъ н инакониецъ, здесь ж е низложена теория всеобищаго тяготения. Т р у д ы Лейбииица, братьевъ Ксрпулли'маркиза д е Л'Оппталь, Германа, Маклоренна, Даниила. Беруллп и друичл рлзвипалии преимущественипо разлпчииыл части дннлмиикп ииренналин частпнляея воинросы. Лиилсрт» обоглтилъ последовательно все части днплмнкии и панинсале миюжестиио отделыиыхе рпзеужденш о р л з л п ч п ы х е п р е д метах!» е л и издал и, к р о м е тон о, два большихе еочипгепнл, пзь к о т о р ы х ъ пе одпоме раэсмлтрнивастсл движение одной материальной т о ч ки, а игь другом ь — двпжеиинл тверднлхе тел т. Л ь 17-13 г. ииапечатаииа Д ' А ламбертопл дина мнка, и в е иией особеипю обитиес падало, из и вестное поде имепемь Д'Лламбертова начала, основываясь па исоторомъ всякий дннамнчесиспи в о п р о с е можно прниести к е вопросу о рлвииовеспи. Въ 1788 г. явилась въ с в е т е Лаи ранжеиа а1налптн1ческая мехаиииша, въ к о т о рой знаменитый авторе ииредложипдъ обицуио Формулу, выражающуио начало возможиныхе с к о р о с т е й , in иирги иомощни ея р е ш а е т е д и намическая задачи , легко руководствуясь одними только правилами анализа. Лап ласе, иъ творении своемъ, • и а д а ш ю и ъ поде пмепемъ Н е б е с н о й механики, и з е закоииове liccooijiaro тлгопшия иыоелъ,до величайшнхе подробностей, законы движений иебеспьнхе т е л е , к а ж у щ и х с я инеправнлыюстей ве э т и х е дви|жси1лхъ и пндпмыл парушеииил и х ъ о б е леннлъ и з е того ж е самаго обшлго законна тяготения. Наконецъ самый обилий динамиче ский вопросе р е ш е п е , к а к е мн.и у ж е сказали, нашнмъ академнкомъ Остроградскииме. Д п н а м о м е т р ъ — ишетрумёитъ, и з о б р е тсишый Реннье и служаииидй к е измерению с и л е , состонитъ иизь эллиптической стальной п р у ж и н ы , ииапрлжепйс которой, производи мое депстннуиондсюсилоио, эаставллетъстрел ку обращаться по циферблату, разделенному па 100 градусоле. Градусы дуги соответству ю т е д и н и ц е т я н у щ е й силы и о п р е д е л я ю т с я опытоме. Е с л и взяться за к б п ц ы пружины