* Данный текст распознан в автоматическом режиме, поэтому может содержать ошибки
и полюса). Например, при αϊ = + 1 + 1 + 1, » 2 = + 1 + 1 - 1 . напряжение на выходе первой группы и = + 1 + 1 — 1 = 1 е. Граница области притяжения полюсов представляет собой геометрическое место точек, равноудаленных от полюсов. Например, рассмотрим систему, имеющую два полюса, которые находятся в точках: αι = + 1 + 1 + 1,
Ct = + 1
2
— 1 -h 1,
(т. е. две соседние вершины куба; другие вершины + 1 - 1 - 1 , + 1 + 1 - 1 , - 1 - 1 + 1, - 1 + 1 + 1, - 1 + 1-1 и - 1 - 1 - 1 ) . Сигналы 01 = + 1 + 1 + 1, щ = + 1 + 1 - 1, U = — 1 + 1 + 1 и U = —1 + 1 —1 дадут большие напряже ния на первой группе реле. Сигналы U = + 1 — 1 — 1, U = = + 1 — 1 + 1, U = — 1 — 1 + 1 и U = — 1 — 1 — 1 заставя сработать второй выход И Б Н . Граница делит куб по полам. При непрерывных сигналах напряжения датчиков об разуют последовательности, состоящие из любых по ве личине и знаку чисел ν = α\ + α + α$-\+ α . Состоя ние ассоциирующих элементов также характеризуется последовательностями непрерывных чисел а, = b \ + b + + + 6 . Напряжение на выходе равно скалярному произведению U= Lv Ci (т. е. сумме произведений соот ветствующих членов сигнала и полюса). Например, при αϊ = + 3 — 2 + 1 и Ui = 1+3 + 4, напряжение на выходе пер вой группы ы = 3 — 6 + 4 = + 1 в. Границы области притяжения полюсов представляют собой геометрическое место точек, равноудаленных от полюсов, если при подсчете выходных напряжений групп
6 7 3 4 5 8 ι 2 π 2 Л 1 i l
начало координат выбрать в «центре тяжести» полюсов
(что практически достигается при помощи смещении). Например, пусть полюса находятся веточках αϊ = —2—2, а г = + 2 + 2 . Сигналы U = —2 —2 и V = — 1 — 1 находятся в области притяжения первого полюса (т. к, дадут на пряжение Ui = 8 в и U =A в в первой группе и Ui = = —8 в и U =— 4 в во второй), а сигналы U = + 1 + 1 и U = + 2 + 2-находятся в области второго полюса (на пряжение выхода второй группы £ / = 4 в и L\=8 в со ответственно). Граница области притяжения — прямая, проходящая через начало координат, перпендикулярно линии, соединяющей полюса. Вернемся к рассматриваемому примеру. Пользуясь
i 2 2 2 3 4 3
245