* Данный текст распознан в автоматическом режиме, поэтому может содержать ошибки
ГРУППЫ, КОЛЬЦА и ПОЛЯ
121
основные отношения («точка лежит на прямой» и т. п.), удовлетво¬ ряющие основным условиям (аксиомам геометрии). Но если так, то можно думать, что существует не одна, а много теорий колец и полей, не одна, а много различных геометрий в за висимости от того, какое конкретное множество положено в основу данной теории. Выход из этого затруднения следует, однако, уже из сказанного выше и заключается в точном определении содержа ния данной математической теории. Ведь данная теория, как было указано, изучает не все свойства элементов множества, а лишь те из них, которые относятся к основным отношениям, заданным для этих элементов, и которые вытекают из основных свойств (аксиом), которым подчиняются основные отношения. Все остальные свойства (сами по себе, может быть, весьма важные) просто не являются предметом изучения в данной теории. Она абстрагируется от этих свойств. Поэтому все множества, для элементов которых определены (для каждого множества по-своему, на основе конкретных свойств его элементов) основные отношения и у которых все свойства этих отношений одинаковы, с точки зрения данной теории неразличимы между собой. Но так как основные отношения определяются для каждого мно жества, исходя из конкретных свойств его элементов, то, изучая в абстрактной форме свойства основных отношений, данная теория изучает, таким образом, некоторые конкретные свойства целого класса конкретных множеств. $то диалектическое единство абстракт ного и конкретного свойственно всякой науке, но в математике оно проявляется, пожалуй наиболее ярко. Конечно, математика изучает не все свойства материальных тел, а лишь те из этих свойств, которые поддаются количественной оценке или пространственному описанию. Основные для всей математики понятия числа и фигуры являются абстрактным выражением именно этих свойств материаль ных тел. Таким образом, несмотря на абстрактный характер построе ния современной математики, для неб остаётся в силе определение, данное Энгельсом ): «Чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира, стало быть — весьма реальный материал. Тот факт, что этот материал принимает чрезвычайно абстрактную форму, может лишь слабо зату шевать его происхождение из внешнего мира». Понятие множеств, имеющих одинаковые свойства отношений между их элементами и поэтому неразличимых в рамках данной математической теории, получает точное выражение в следующем общем понятии изоморфизма: О п р е д е л е н и е 1. Два множества А1 и М', в каждом из ко торых определены отношения элементов, образующие некоторую
1 1
) Ф. Э н г е л ь с , Анти-Дюринг, 194S, стр. 37,