* Данный текст распознан в автоматическом режиме, поэтому может содержать ошибки
СВЕДЕНИЕ
79
В главе первой даны необходимые сведения из теории множеств. В главе второй рассматриваются понятия группы, кольца и поля, причём в общем виде изучаются свойства алгебраических операций, которые затем многократно применяются при изучении чисел той или иной природы. В дальнейших главах последовательно вводятся натуральные, целые, рациональные, действительные и комплексные числа. В последнем параграфе рассматриваются также кватернионы и разбирается вопрос о возможности дальнейшего расширения чис ловых областей. Имея в виду логическое обоснование свойств чисел, мы при использовании уже доказанных свойств обычно даём в скобках ссылку на соответствующую теорему из предыдущих глав. Поэтому читателю, желающему проверить правильность обоснования данного свойства, нужно либо читать всю предшествующую часть статьи, либо те части её, которые указаны в этих ссылках. Однако чита телю, специально интересующемуся обоснованием свойств чисел данной природы и желающему принять свойства предыдущих чи словых областей как известные, можно после первых двух глав и § 19 главы IV, где вводятся понятия, необходимые для понимания всего дальнейшего, читать сразу интересующую его главу. При таком чтении можно просто не обращать внимания на ссылки в скобках, так как свойства чисел, о которых идёт речь, сами по себе известны каждому школьнику. Так, приняв известными свой ства рациональных чисел, можно после первых двух глав и § 19 читать сразу главу V I о действительных числах, приняв же извест ными свойства действительных чисел, можно читать главу VII о комплексных числах.