Статистика - Статей: 909699, Изданий: 1065

Искать в "Математическая энциклопедия..."

ГРИНА ФОРМУЛЫ





- формулы интегрального исчисления функций многих переменных, связывающие значения га-кратного интеграла по области D n -мерного евклидова пространства и -кратного интеграла по кусочно гладкой границе этой области. Г. ф. получаются интегрированием по частям интегралов от дивергенции векторного поля, непрерывного в и непрерывно дифференцируемого в В простейшей Г. ф.



криволинейный интеграл по контуру Г выражается через двойной интеграл по области . При этом область Dориентируется естественным образом, а на границе Г берется индуцированная ориентация, известная как обход против часовой стрелки. Формула (1) имеет простой гидродинамич. смысл: поток через границу области Г жидкости, текущей по плоскости со скоростью , равен интегралу по области

Dот интенсивности (дивергенции)



распределенных в Dисточников и стоков. В этом смысле Г. ф. (1) подобна Остроградского формуле (см. также "Стокса формула").

Формула (1) иногда наз. именами К. Гаусса (С. Gauss) и Б. Римана (В. Riemann). Ни одно из употребляемых названий не является исторически верным: формула (1) встречалась еще в работах по анализу 18 в. - у Л. Эйлера (L. Euler) и др.

Дж. Грину [1] принадлежат следующие Г. ф. потенциала теории



-подготовительная Г. ф. и



где D - область , - элемент объема - элемент площади , - единичная внешняя (ко)нормаль к Г,



- оператор дифференцирования в направлении (ко) вектора N, а



- оператор Лапласа.

Формулы (2), (3) справедливы и в случае, когда Dесть область - элемент объема - элемент ( п-1)-мерного объема Г, а



- оператор Лапласа с пнезависимыми переменными.

Обобщения Г. ф. (2) и (3) для линейных дифференциальных операторов с частными производными с достаточно гладкими коэффициентами имеют вид:

1) если



- (вещественно) сопряженные дифференциальные операторы второго порядка, , то



где - единичный (ко)вектор внешней нормали к Г,



- оператор дифференцирования по направлению так наз. конормали

оператора L;

2) если



где М - конормаль оператора L,a

3) если





- (вещественно) сопряженные дифференциальные операторы порядка - целочисленный мультииндекс длины ,

то



Здесь граничный интеграл можно записать в виде билинейной суммы



где - нек-рые линейные дифференциальные операторы порядков .

Г. ф. играют важную роль в анализе и особенно в теории краевых задач для дифференциальных операторов (обыкновенных и с частными производными) второго и более высоких порядков. Для достаточно гладких в функций Г. ф. (2), (4) служат источником ряда соотношений, полезных для изучения свойств решения краевых задач, выяснения вида краевых задач, получения решения в явном виде и т. п. Напр., для гармонической в Dфункции из (2) при следует "Гаусса теорема":



Для достаточно гладких в функций и функции



имеющей при такую же особенность, как и фундаментальное решение оператора Лапласа, верны следующие Г. ф.:



Здесь число



а есть площадь -мерной единичной сферы пространства . При этом для предполагается, что граница Г имеет непрерывную касательную плоскость в нек-рой окрестности у.

Формулы (5) и (6) служат основой получения интегральных представлений решений основных краевых задач потенциала теории (см. Гармоническая функция, Грина функция, Пуассона формула). Напр., отсюда для гармонической в Dфункции и(х).получаем формулу, или интеграл Грина

(7)

играющую важную роль в теории гармонических функций.

Формулы, подобные формулам (5), (6), дающие интегральные представления решения задачи Коши или смешанной задачи, имеют место и для нормально гиперболич. оператора второго порядка. См. Кирхгофа формула, Римана метод, Римана функция.

О Г. ф. в теории краевых задач см. также [4] -[9]. Лит.:[1] Green G., An essay on the application of mathematical analysis to the theories of electricity and magnetism. Nottingham, [1828]; [2] Максвелл Д., Избранные сочинения по теории электромагнитного поля, пер. с англ., М., 1954; [3] Смирнов В. И., Курс высшей математики, т. 2, 20 изд., М., 1966; [4] Курант Р., Уравнения с частными производными, пер. с англ., М., 1964; [5] Владимиров В. С., Уравнения математической физики, 2 изд., М., 1971; [6] Соболев С. Л., Уравнения математической физики, 4 изд., М., 1966; [7] Миранда К., Уравнения с частными производными эллиптического типа, пер. с итал., М., 1957; [8] Данфорд Н., Шварц Д ж. Т., Линейные операторы, пер. с англ., ч. 2, М., 1966; [9] Лионе Ж.-Л., Мадженес Э., Неоднородные граничные задачи и их приложения, пер. с франц., М., 1971.

А. К. Гущин, Л. П. Купцов.



Еще в энциклопедиях


В интернет-магазине DirectMedia