* Данный текст распознан в автоматическом режиме, поэтому может содержать ошибки
Плоское напряженное состояние
85
П о к е напряженное состояние при условии пластичности Т е к — лсо рса
Сен-Венана. Трудности интегрирования уменьшаются при переходе К у л в ю пластичности т сои = = const = T . В связи с этим задачи нло ~ ского нвпряжекного состояния решают большей частью при условии пластичности Треска — Сен-Венана- Н а плоскости o а вместо эллипса теперь (см. будет вписанный шестиугольник р я с , 32). два случая; Необходимо различать разные знаки (o G<,<^0) и o имеют и и ?\ и с,т имеют одинаковые знаки л
ш х
S lt 2
Г|
ffl
s
L
4
В первом случае условие пластичности, основные уравнения и методы решения будут такими же, как в задаче о 1глоской деформации. Во втором случае {а а ^> 0) условие ч а с т и ч н о с т и имеет вид о = ±а или РнСн 3 3 . П л а с т и к а с отвер щ == ±G с (прямые, параллельные осям стием под действием внутрен моординат, рис. 32); соответствующая си него д а в л е н и я . Р а с п р е д е л е н и е стема уравнений параболическая и имеет н а п р я ж е н и й о , #ф и упругоЗрЬстое решение. пластическом с о с т о я н и и Поле скоростей определяют согласно $акону ассоциированного течения. Упруго-пластическое равновесие пластины с отверстием под дейСтелем равномерного внутреннего давления (рис. 33)- Напряжения в пластической зоне г с при условии Треска — Сен-Венана
1 2
х
Т
Л
T
г
*
*
»
а =
г
—г т
:
"-Г
:
Стф -- о , -tfr
Тл
Т ~
, П
Тяк как напряжения по величине не превышают о пластическая зола может распространиться U f* i l t до - — =^ 1,65. В упру
От
гой зоне г > с
напряжения будут
а
-^^•ииченной пластины й-г огперстнем
.. Распределение напряжений показано
на рис.
30. Давление р
=
^ ь л с и е к е равновесие р с я и а м й п а т н с к у о ы бОатчсо атгвео л с и ы ргвм ЭДИрстием (рис. 34). П о схеме Треска—Сен-Венана напряжения